既往研究提示,高濃度葡萄糖是誘導(dǎo)糖尿病腎病纖維化的主要病理機(jī)制。高濃度的葡萄糖可誘導(dǎo)腎小管導(dǎo)管上皮細(xì)胞α-SMA表達(dá)[4-5],α-SMA為肌成纖維細(xì)胞的標(biāo)志性蛋白,是反映上皮細(xì)胞轉(zhuǎn)分化主要觀察指標(biāo)。目前發(fā)現(xiàn),高糖促轉(zhuǎn)分化的作用機(jī)制主要是通過上調(diào)各種細(xì)胞分化或基質(zhì)增殖的蛋白水平,例如TGF-β1、PTHrP、Ⅰ型膠原及MMP-2等,TGF-β1、PTHrP信號通路在器官纖維化中的作用已經(jīng)明確,其水平升高可以通過上調(diào)Smad系列蛋白表達(dá),誘導(dǎo)細(xì)胞轉(zhuǎn)分化為纖維細(xì)胞。而Ⅰ型膠原及MMP-2是參與基質(zhì)沉積及積聚的主要調(diào)控蛋白,同時以自分泌及旁分泌方式作用本體細(xì)胞或鄰近細(xì)胞,從而放大纖維化效應(yīng)[4-7]。其他細(xì)胞包括血管內(nèi)皮細(xì)胞、平滑肌細(xì)胞等不僅是單純性高糖,間歇性高糖同樣可以從多個水平影響細(xì)胞分化通路TGFβ1/Smad信號轉(zhuǎn)導(dǎo),從而加重纖維化進(jìn)程[2-3]。
本研究發(fā)現(xiàn),高濃度葡萄糖環(huán)境或間歇性高糖分別作用NRK-52EA細(xì)胞后,其TGF-β1、Ⅰ型膠原、MMP-2、α-SMA以及PTHrP表達(dá)水平均顯著上調(diào);間歇性高糖TGF-β1、MMP2以及α-SMA表達(dá)較持續(xù)性高糖作用更為顯著,該結(jié)果與Polhill等[8]對腎小球系膜細(xì)胞研究結(jié)果—間歇性高糖可以促進(jìn)腎小球系膜細(xì)胞纖維化相似,故推測間歇性高糖較持續(xù)性高糖可能更容易通過激活TGF-β1、MMP-2而誘導(dǎo)腎小管導(dǎo)管上皮細(xì)胞NRK-52EA轉(zhuǎn)分化為含α-SMA的間充質(zhì)細(xì)胞,加重腎臟纖維化。
本研究結(jié)果還發(fā)現(xiàn),間歇性高糖能顯著上調(diào)NRK-52EA細(xì)胞株的ROS含量,其水平高于單純性高糖組。Quagliaro等[9]研究提示間歇性高糖能通過氧化應(yīng)激作用促進(jìn)ROS積聚,誘導(dǎo)各種炎癥因子包括MMP等表達(dá),而該系列炎癥因子已經(jīng)被證實參與誘導(dǎo)腎小管導(dǎo)管上皮轉(zhuǎn)分化為間充質(zhì)細(xì)胞進(jìn)程[10],Jones等[11]也發(fā)現(xiàn)間歇性高糖能顯著誘導(dǎo)人臍靜脈內(nèi)皮細(xì)胞氧化應(yīng)激反應(yīng)標(biāo)記物硝基酪氨酸含量升高,從而促進(jìn)細(xì)胞凋亡。故認(rèn)為間歇性高糖誘導(dǎo)NRK-52EA細(xì)胞轉(zhuǎn)分化作用比持續(xù)性高糖更顯著,其機(jī)制可能是間歇性高糖誘導(dǎo)細(xì)胞內(nèi)氧化應(yīng)激更嚴(yán)重,從而促進(jìn)腎小管導(dǎo)管上皮細(xì)胞TGF-β1、MMP-2等系列蛋白的表達(dá)以拮抗炎癥反應(yīng),而TGF-β1、MMP-2蛋白表達(dá)上調(diào),又進(jìn)一步加重腎小管上皮細(xì)胞纖維化進(jìn)程。
綜上所述,間歇性高糖對腎小管上皮細(xì)胞的損害應(yīng)該更予重視。提示臨床控制血糖平穩(wěn)是糖尿病治療的重要基礎(chǔ),在此基礎(chǔ)上適當(dāng)抗氧化治療有望減輕氧化應(yīng)激, 保護(hù)腎小管上皮細(xì)胞, 遲滯其轉(zhuǎn)分化, 可能會延緩糖尿病并發(fā)癥的發(fā)展醫(yī).學(xué).全.在.線payment-defi.com。
【參考文獻(xiàn)】
1]Beltramo E,Berrone E,Tarallo S,et al.Different apoptotic responses of human and bovine pericytes to fluctuating glucose levels and protective role of thiamine[J].Diabetes Metab Res Rev,2009,25(6):566-576.
[2] Risso A,Mercuri F,Quagliaro L,et al.Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture[J].Am J Physiol Endocrinol Metab,2001,281(5):E924-930.
[3] Sanchez AP,Sharma K.Transcription factors in the pathogenesis of diabetic nephropathy[J].Expert Rev Mol Med,2009,11:e13.
[4] Lo CS,Chen CH,Hsieh TJ,et al.Local action of endogenous renal tubular atrial natriuretic peptide[J].J Cell Physiol,2009,219(3):776-786.
[5] Li H,Liu D,Zhao CQ,et al.High glucose promotes collagen synthesis by cultured cells from rat cervical posterior longitudinal ligament via transforming growth factor-beta1[J].Eur Spine J,2008,17(6):873-881.
[6] Hills CE,Al-Rasheed N,Al-Rasheed N,et al.C-peptide reverses TGF-beta1-induced changes in renal proximal tubular cells:implications for treatment of diabetic nephropathy[J].Am J Physiol Renal Physiol,2009,296(3):F614-621.
[7] Holian J,Qi W,Kelly DJ,et al.Role of Kruppel-like factor 6 in transforming growth factor-beta1-induced epithelial-mesenchymal transition of proximal tubule cells[J].Am J Physiol Renal Physiol,2008,295(5):1 388-1 396.
[8] Polhill TS,Saad S,Poronnik P,et al.Short-term peaks in glucose promote renal fibrogenesis independently of total glucose exposure[J].Am J Physiol Renal Physiol,2004,287(2):268-273.
[9] Quagliaro L,Piconi L,Assaloni R,et al.Intermittent high glucose enhances ICAM-1,VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production[J].Atherosclerosis,2005,183(2):259-267.
[10] Simonson MS.Phenotypic transitions and fibrosis in diabetic nephropathy[J].Kidney Int,2007,71(9):846-854.
[11] Jones SC,Saunders HJ,Qi W,et al.Intermittent high glucose enhances cell growth and collagen synthesis in cultured human tubuleinterstitial cell[J].Diabetologia,2004,42(9):1 113-1 119.